Universitarias
UN NUEVO ESTUDIO TERRITORIAL
Con el objetivo de mejorar la eficacia y bajar los costos, el Centro de Estudios Territoriales (CET) de la Facultad de Ciencias Exactas, Físicas y Naturales (UNC) junto con Idecor, dependiente del Ministerio de Finanzas de la provincia de Córdoba, y con el apoyo inicial del Programa de Naciones Unidas para el Desarrollo (PNUD), llevaron adelante un estudio territorial y del mercado inmobiliario en toda la provincia.
En ese marco, desarrollaron una metodología innovadora que ahora se utiliza, año a año, para determinar las valuaciones catastrales de los más de dos millones de inmuebles urbanos y rurales de toda la provincia de Córdoba. Para ello, utilizan modelos de valuación masiva automatizada (VMA) y mapas digitales que posibilitan la predicción de valores a partir del entrenamiento de diferentes algoritmos.
Se trata de técnicas de aprendizaje computacional (machine learning), entre las que destacan RandomForest, Support Vector Machine y Redes Neuronales.
El machine learning es un conjunto de técnicas de inteligencia artificial. Consiste en alimentar algoritmos con un vasto volumen de datos, de manera que puedan abstraer (“aprender”) las reglas matemáticas que rigen las relaciones entre esos datos. Luego, esas reglas pueden ser aplicadas a nuevos grupos de datos y efectuar predicciones precisas.
Para el equipo que desarrolló este modelo, entre las ventajas de aplicar técnicas algorítmicas a la valuación masiva se destacan su capacidad de manejar grandes volúmenes de datos, el elevado nivel de predicción, así como la factibilidad de sostener y repetir este tipo de estudios periódicamente.
Juan Pablo Carranza, integrante del equipo e investigador de la Facultad de Ciencias Sociales de la UNC, explica que los modelos de predicción requieren dos tipos de insumos. “El primero es una muestra con inmuebles georreferenciados sobre los que se conoce el precio de la tierra, lo que constituye nuestra variable dependiente. El segundo insumo, en tanto, consiste en información georreferenciada potencialmente útil para la construcción de variables independientes que ayuden a explicar el fenómeno”.
Para disponer de muestras de mercado de manera permanente, en 2017 se creó un Observatorio del Mercado Inmobiliario (OMI), que releva anualmente un promedio entre 13.000 y 14.000 datos relacionados a oferta de venta y alquileres de viviendas, departamentos, terrenos e inmuebles rurales en toda la provincia.
Respecto al ámbito urbano, Mario Piumetto, director del Centro de Estudios Territoriales y profesor de la Facultad de Ciencias Exactas, Físicas y Naturales de la UNC destaca, además, dos tipos de variables independientes.
“En un primer grupo –comenta– se ubican las ‘de entorno’, construidas a partir de la base de catastro (tamaño promedio de construcciones en el sector donde se localiza, tamaño promedio de lotes, porcentaje del nivel edificado, y datos derivados de imágenes satelitales). En el segundo grupo se encuentran las variables que expresan relaciones espaciales de ‘localización y distancia’ a rutas y vías principales, zonas comerciales, zonas de mayor o menor categoría edilicia.”
Para el ámbito rural, Piumetto –quien se desempeña también como coordinador de Idecor– menciona como variables independientes la capacidad de uso e índices de productividad de los suelos, el clima, la topografía, la infraestructura, e incluso una serie de datos desarrollados especialmente para estos estudios, como el mapa de cobertura y uso del suelo (landcover), entre otros.
Toda esta información se utiliza para la estimación de modelos predictivos, que consisten en el entrenamiento de diferentes algoritmos de aprendizaje computacional.
“A través de la iteración con los datos de la muestra de mercado, los algoritmos ‘aprenden’ las relaciones matemáticas subyacentes entre el precio de la tierra y las diferentes variables independientes utilizadas. Luego, esas reglas matemáticas son aplicadas para predecir el precio de la tierra en el resto del espacio”, detalla Carranza.
Así, por ejemplo, una vez que el algoritmo utilizado aprendió cómo se relacionan el precio de la tierra y la distancia a avenidas, a un río, a zonas con mayor densidad edificada, y a actividades económicas en el entorno, entre otras variables, las interpola al resto del espacio y obtiene para cada terreno el valor por metro cuadrado en esa localización.
En diciembre de 2022 se completó, por quinto año consecutivo, una nueva actualización de valores de la tierra urbana y rural para todo el territorio provincial. El estudio de mercado de suelo urbano tuvo por objetivo determinar el valor unitario de la tierra urbana (VUT) por parcela, en las más de 400 localidades de la provincia.
Los resultados informan valores en pesos y en dólares por metro cuadrado, para cerca de 1,7 millones de parcelas urbanas. Para el caso de los inmuebles rurales, se actualizaron los valores a niveles de mercado, en pesos y en dólares por hectárea, a un detalle de 25 hectáreas (grilla con celdas de 500 metros de lado).
Los datos de estos estudios son plasmados en mapas abiertos disponibles en el geoportal Mapas Córdoba. El Mapa Valor de la Tierra Urbana 2022 permite navegar sobre cualquier municipio o comuna, geolocalizar un inmueble mediante su dirección, número de cuenta de rentas o nomenclatura catastral y conocer los valores de referencia para cada terreno. El Mapa de Valores de la Tierra Rural 2022 presenta información catastral y de valores en cualquier sector o parcela rural.